TECHNICAL DETAILS REGUFOAM VIBRATION PLUS AND REGUPOL VIBRATION

TABLE OF CONTENTS

Overview Technical Details	Те
REGUPOL and its subsidiaries08	
Technical Details REGUFOAM vibration09 - 82	
REGUFOAM vibration 150plus	
REGUFOAM vibration 190plus	
REGUFOAM vibration 220plus	
REGUFOAM vibration 270plus	
REGUFOAM vibration 300plus	
REGUFOAM vibration 400plus	
REGUFOAM vibration 510plus	
REGUFOAM vibration 570plus	
REGUFOAM vibration 680plus	
REGUFOAM vibration 740plus	
REGUFOAM vibration 810plus	
REGUFOAM vibration 990plus	

echnical Details REGUPOL vibration					
REGUPOL vibration 200 85 - 90 Maximum static load bearing capacity 0.02 N/mm ²					
REGUPOL vibration 300					
REGUPOL vibration 400 97 - 102 Maximum static load bearing capacity 0.10 N/mm²					
REGUPOL vibration 450 103 - 108 Maximum static load bearing capacity 0.12 N/mm²					
REGUPOL vibration 480 109 - 114 Maximum static load bearing capacity 0.15 N/mm²					
REGUPOL vibration 550					
REGUPOL vibration 800					
REGUPOL vibration 1000 127 - 132 Maximum static load bearing capacity 1.50 N/mm²					

REGUFOAM VIBRATION – MIXED-CELL POLYURETHANE ELASTOMERS

The building authority approved **REGUFOAM vibration** range offers a portfolio of twelve product types which can be used in the wide load range between 0.002 N/mm² and 2.500 N/mm². This creates many possibilities to implement an isolation concept for projects in the field of building services and HVAC equipment, machines, pools and gyms, as well as vibration profection for buildings, especially those in close proximity to rail infrastructure.

Our team is by your side to assist you in product selection, planning, conception of installation plans and will provide support during installation and implementation

REGUFOAM vibration is characterized by its outstanding durability. Successfully completed projects and expert opinions document the quality of these materials.

Contact us to share the expert reports.

Possible Uses

Due to their different rigidities and admissible load ranges, building and machine foundations can either be bedded elastically on strips or delicate point supports. Due to the low natural frequencies achievable, this type of support is technically efficient, but more difficult to plan and execute.

The technical details, clearly arranged and determined as well as tested, provide a full overview of the load range of the **REGUFOAM vibration** elastomers and their non-linear material properties. They allow expert consultants to select and properly size the elastomer type that suits the situation at hand and meets its respective requirements.

REGUFOAM vibration elastomers are largely moisture- and rof-resistant. They are also ozone-resistant, but the colours may fade over time due to UV radiation. Because of their mixed-cell structure, especially types with lower dynamic rigidity can absorb water. These must be profected against water uptake.

Effectiveness of REGUFOAM vibration Elastomers

The **REGUFOAM vibration** products do have a defined load range in which natural frequencies of ≤ 10 Hz can be achieved with thicknesses of 50 mm. Optimal results can be realised in the range of the specified load capacity limit. Exceeding this load limit leads to degressive spring characteristics, though nof to material failure. In fact, the rated value for maximum load bearing capacity is 150 to 200% of the specified load limit.

REGUFOAM vibration elastomers are produced and shipped in rolls. They can be cut to size with a standard utility knife right at the construction site.

REGUFOAM VIBRATION – TECHNICAL DETAILS OVERVIEW

REGUFOAM vibration is a mixed cell polyurethane foam for vibration isolation. It is available in 12 different qualities.

Standard-Forms of delivery, ex warehouse

Rolls for types 150plus to 300plus

Plates for types 400plus to 990plus					
Width:	1,500 mm				
Length:	5,000 mm				
Thickness:	12.5 and 25.0 mm				

Thickness: 12.5 and 25.0 mm

Length: 1,500 mm Width: 1,000 mm

Stripping/Plates

Individual length, width or thickness on request. Die-cutting, water-jet cutting, self-ashesive versions available

REGUFOAM vibration Colour	150 plus	190 plus	220 plus	270 plus	300 plus	400 plus	510 plus	570 plus	680 plus	740 plus	810 plus	990 plus
Maximum static load bearing capacity N/mm²	0.011	0.018	0.028	0.042	0.055	0.110	0.220	0.300	0.450	0.600	0.850	2.500
Optimum load range N/mm²	0.004 - 0.011	0.011 - 0.018	0.018 - 0.028	0.028 - 0.042	0.042 - 0.055	0.055 - 0.110	0.110 - 0.220	0.220 - 0.300	0.300 - 0.450	0.450 - 0.600	0.600 - 0.850	0.850 - 2.500
Tensile strength ¹ N/mm²	0.3	0.4	0.5	0.9	1.2	1.5	2.4	2.9	3.6	4.0	4.6	6.9
Mechanical loss factor ²	0.28	0.25	0.22	0.20	0.18	0.17	0.15	0.14	0.12	0.11	0.10	0.09
Static modulus of elasticity³ N/mm²	0.06 - 0.16	0.10 - 0.25	0.15 - 0.35	0.25 - 0.45	0.35 - 0.58	0.60 - 1.00	1.10 - 1.70	2.60 - 2.90	3.80 - 4.10	4.30 - 5.90	5.40 - 8.00	20.00- 78.00
Dynamic modulus of elasticity ⁴ N/mm²	0.15 - 0.38	0.25 - 0.55	0.35 - 0.72	0.60 - 1.05	0.68 - 1.25	1.20 - 2.00	2.20 - 3.70	5.30 - 6.50	7.00 - 10.00	8.90 - 13.00	11.00 - 16.50	41.00 - 160.00
Compression hardness⁵ kPa	14	22	22	63	82	170	330	620	840	1050	1241	3640
Fire behaviour						B2. E						

1 Measurement based on DIN EN ISO 1798

2 Measurement based on DIN 53513; load-, amplitude- and frequency-dependent.

- 3 Measurement based on EN 826.
- 4 Measurement based on DIN 53513; depending on frequency, load and thickness.
- 5 Measurement based on DIN EN ISO 3386-2; compressive stress at 25 % deformation, depending on thickness.

Technical services and offers based on these are subject to our General Terms and Conditions of sale, a copy of which can be found on our website www.regupol.com. Special attention should be paid to paragraphs 4 and 5. In so far, please be advised as follows: Our expertise is the development and manufacturing of products. With our recommendation we can only assist you in selecting a product that is suitable for your demand. However, we cannof act as your architect or consulting expert. This would only be possible subject to a separately concluded service contract that we would have to bill you for. Such contracts are nof part of our scope of supply and services. Hence, our recommendation does nof lay claim for its correctness. Guarantees do only apply to the technical properties of the material supplied. Comment on tolerances: All technical values correspond to our current state of knowledge and are to be understood as reference values only. These values can be subject to considerable variabilities due to production and/or material reasons as well as due to outside influences (temperature, humidity etc.). Thus special agreements on material parameters might be necessary on a case-by-case basis.

REGUPOL VIBRATION – ELASTOMER MATS MADE OUT OF RUBBER FIBERS

The building authority approved **REGUPOL vibration** range offers a portfolio of eight product types which can be used in the wide load range between 0.002 N/mm² and 1.500 N/mm². This creates many possibilities to implement an isolation concept for projects in the field of building services and HVAC equipment, machines, pools and gyms, as well as vibration profection for buildings, especially those in close proximity to rail infrastructure.

Our team is by your side to assist you in product selection, planning, conception of installation plans and will provide support during installation and implementation.

The material, made of recycled rubber from vehicle tyres, is extremely resilient and durable. Even after decades in use, its properties only change marginally. Successfully completed projects and expert opinions document the quality of these materials.

Contact us to share the expert reports.

Effectiveness of REGUPOL vibration Elastomers

The **REGUPOL vibration** products have relatively wide load ranges and are characterised by a constant natural frequency. Best outcomes can be expected if the product is used within the range of the specified load capacity limit. Exceeding this load limit does lead to progressive spring characteristics but nof to material failure. In fact, the rated value for maximum load capacity is 150 to 200 % of the specified limit.

REGUPOL elastomers are produced and shipped in rolls. They can be cut to size with a standard utility knife right at the construction site.

Possible Uses

Due to higher rigidities and the admissible load ranges of some elastomer types, buildings and machine foundations can either be bedded elastically on strips or on delicate point supports. Due to the low natural frequencies available, this type of support is technically efficient, but more difficult to plan and execute.

The technical details provide a full overview of the load range of the **REGUPOL** elastomers and their non-linear material properties. They allow expert consultants to select and properly size the elastomer type that suits the situation at hand and meets its respective requirements.

REGUPOL vibration elastomers are largely moisture- and rof-resistant. Due to their ozone resistance and their longterm elasticity, even after freeze-thaw alternations, they are suitable for indoor and outdoor applications. Thus, the use is nof only within but also outside of buildings. The only exception is **REGUPOL vibration 200**. Due to its low stiffness and its cellular structure, it needs to be profected against moisture and water.

REGUPOL VIBRATION – TECHNICAL DETAILS OVERVIEW

REGUPOL vibration is a rubber-polyurethane-composite for vibration isolation. It is available in eight different qualities.

Standard-Forms of delivery, ex warehouse

Depending on material. Exact dimensions are mentioned in the technical data sheets of each material type.

Stripping/Plates

Individual length, width or thickness on request. Die-cutting, water-jet cutting, self-adhesive versions available

REGUPOL vibration	200	300	400	450	480	550	800	1000
Maximum static load bearing capacity N/mm²	0.02	0.05	0.10	0.12	0.15	0.30	0.80	1.50
Optimum load range N/mm²	0.004 - 0.014	0.010 - 0.050	0.050 - 0.100	6	0.050 - 0.150	0.150 - 0.300	0.200 - 0.800	0.800 - 1.500
Tensile strength ¹ N/mm²	0.12	0.30	0.34	0.15	0.36	0.60	0.90	2.30
Mechanical loss factor ²	0.22	0.18	0.17	0.17	0.17	0.16	0.18	0.16
Static modulus of elasticity ³ N/mm²	0.02 - 0.08	0.10 - 0.20	0.30 - 0.55	0.20 - 0.40	0.25 - 0.80	0.50 - 1.70	1.20 - 2.90	4.00 - 11.00
Dynamic modulus of elasticity ⁴ N/mm²	0.05 - 0.38	0.20 - 1.40	0.90 - 2.40	0.45 - 2.70	1.20 - 3.30	2.50 - 7.00	3.60 - 18.20	15.00 - 45.00
Compression hardness⁵ kPa	14	50	180	83	220	414	545	1650
Fire behaviour					B2, E			

1 Measurement based on DIN EN ISO 1798

- 2 Measurement based on DIN 53513; load-, amplitude- and frequency-dependent.
- 3 Measurement based on EN 826.
- 4 Measurement based on DIN 53513; depending on frequency, load and thickness.
- 5 Measurement based on DIN EN ISO 3386-2; compressive stress at 25 % deformation, depending on thickness.
- 6 **REGUPOL vibration 450** is used for vertical isolation.

Technical services and offers based on these are subject to our General Terms and Conditions of sale, a copy of which can be found on our website www.regupol.com. Special attention should be paid to paragraphs 4 and 5. In so far, please be advised as follows: Our expertise is the development and manufacturing of products. With our recommendation we can only assist you in selecting a product that is suitable for your demand. However, we cannof act as your architect or consulting expert. This would only be possible subject to a separately concluded service contract that we would have to bill you for. Such contracts are nof part of our scope of supply and services. Hence, our recommendation does nof lay claim for its correctness. Guarantees do only apply to the technical properties of the material supplied. Comment on tolerances: All technical values correspond to our current state of knowledge and are to be understood as reference values only. These values can be subject to considerable variabilities due to production and/or material reasons as well as due to outside influences (temperature, humidity etc.). Thus special agreements on material parameters might be necessary on a case-by-case basis.

REGUPOL and its subsidiaries

REGUPOL BSW GmbH

Am Hilgenacker 24 57319 Bad Berleburg Germany phone +49 2751 803 0 info@regupol.de www.regupol.com

REGUPOL America LLC

11 Ritter Way Lebanon, PA 17042 USA phone +1 800 537 8737 sales@regupol.com www.regupol.com

REGUPOL Australia Pty. Ltd.

155 Smeaton Grange Road SMEATON GRANGE NSW 2567 Australia phone +61 2 4624 0050 acousticsales@regupol.com.au www.regupol.com.au

REGUPOL Acoustics Middle East FZE

P.O. Box 61201 JAFZA, Dubai United Arab Emirates phone +971 4 8811 428 info@regupol.ae www.regupol.ae

REGUPOL Schweiz AG

Bahnhofstrasse 5 8953 Dietikon Switzerland phone +41 44 542 84 40 info@regupol.ch www.regupol.ch

BSW Shanghai CO. LTD.

Room 1105 No. 488 South Wuning Road Jingan District 200042 Shanghai China phone +86 21 6267 3369 info@regupol.cn www.regupol.cn

REGUPOL Zebra Athletics LLC

9210 Wyoming Ave N #270 Minneapolis, MN 55445 USA phone +1 800 989 8085 info@zebraathletics.com www.zebraathletics.com

Ĵ

TECHNICAL DETAILS REGUFOAM VIBRATION PLUS

Forms of delivery, ex warehouse

Rolls

Thickness: 12.5 and 25 mm, special thicknesses on requestLength:5,000 mm, special lengths availableWidth:1,500 mm

Stripping/Plates

On request: Die-cutting, water-jet cutting, self-adhesive versions possible

Technical Details

Maximum static load bearing capacity 0.011 N/mm²

Maximum dynamic load bearing capacity for intermitted loadings 0 to 0.016 N/mm²

Rare, short term peak loads

up to 0.500 $N/mm^{\rm 2}$

Physical property	Norm	Result	Comment
Static modulus of elasticity	Based on EN 826	0.06 - 0.16 N/mm²	Tangential modulus, see figure "Modulus of elasticity"
Dynamic modulus of elasticity	Based on DIN 53513	0.15 - 0.38 N/mm²	Depending on frequency, load and thickness, see figure "dynamic stiffness"
Mechanical loss factor	DIN 53513	0.28	Load-, amplitude- and frequency-dependent
Compression set	Based on DIN EN ISO 1856	1.6 %	Measured 30 minutes after decompression with 50% deformation / 23 °C after 72 hrs
Tensile strength	Based on DIN EN ISO 1798	0.31 N/mm²	
Elongation at break	Based on DIN EN ISO 1798	220 %	
Tear resistance	Based on DIN ISO 34-1	1.2 N/mm	
Fire behaviour	DIN 4102 DIN EN 13501	B2 E	Normal flammability acceptable fire behaviour
Sliding friction	REGUPOL-laboratory REGUPOL-laboratory	0.7	Steel (dry) Concrete (dry)
Compression hardness	Based on DIN EN ISO 3386-2	14 kPa	Compressive stress at 25 % deformation test specimen h = 25 mm
Rebound elasticity	Based on DIN EN ISO 8307	34%	dependent on thickness, test specimen h = 25 mm
Force reduction	DIN EN 14904	49 %	dependent on thickness, test specimen h = 25 mm

2.50

Examination of deflection in accordance to DIN EN 826 between two stiff panels. Illustration based on the third loading. Velocity of loading and unloading 20 seconds. Tested at room temperature. Dimensions of test specimens 300 x 300 mm.

Illustration of the isolation efficiency of a single-degree-of-freedom system (SDOF system) on a rigid base with **REGUFOAM vibration 150plus.** Parameter: power transmission (insertion loss) in dB, isolation factor in %.

2.50

0.85

990plus

Technical Data | **REGUFOAM vibration 150plus** | Release 31.03.2021 | www.regupol.com

Change of the dynamic stiffness due to changes in amplitudes. Average for 5 Hz, 10 Hz and 40 Hz excitation. Sinusoidal excitation at a constant mean load of 0.011 N/mm², dimensions of the specimens 300 x 300 x 25 mm. Natural frequency of a single-degree-of-freedom system (SDOF system) on a rigid base.

Change of the mechanical loss factor due to changes in amplitudes. Sinusoidal excitation at a constant mean load of 0.011 N/mm^2 , dimensions of the specimens $300 \times 300 \times 25 \text{ mm}$.

0.00

2.50

0.85

0.60

0.45

0.30

0.22

0.11

0.055

0.042

0.028

990plus

810plus

740plus

680plus

570plus

510plus

400plus

300plus

270plus

220plus

190plus

Exclusion of Liability

Technical services and offers based on these are subject to our General Terms and Conditions of sale, a copy of which can be found on our website www. berleburger.com. Special attention should be paid to paragraphs 4 and 5. In so far, please be advised as follows:

Our expertise is the development and manufacturing of products. With our recommendation we can only assist you in selecting a product that is suitable for your demand. However, we cannot act as your architect or consulting expert. This would only be possible subject to a separately concluded service contract that we would have to bill you for. Such contracts are not part of our scope of supply and services. Hence, our recommendation does not lay claim for its correctness. Guarantees do only apply to the technical properties of the material supplied.

Comment on tolerances: All technical values correspond to our current state of knowledge and are to be understood as reference values only. These values can be subject to considerable variabilities due to production and/or material reasons as well as due to outside influences (temperature, humidity etc.). Thus special agreements on material parameters might be necessary on a case-by-case basis.

16 | 136

Forms of delivery, ex warehouse

Rolls

Thickness: 12.5 and 25 mm, special thicknesses on requestLength:5,000 mm, special lengths availableWidth:1,500 mm

Stripping/Plates

On request: Die-cutting, water-jet cutting, self-adhesive versions possible

Technical Details

Maximum static load bearing capacity 0.018 N/mm²

Maximum dynamic load bearing capacity for intermitted loadings 0 to 0.028 N/mm²

Rare, short term peak loads

up to 0.800 N/mm²

Physical property	Norm	Result	Comment		
Static modulus of elasticity	Based on EN 826	0.10 - 0.25 N/mm²	Tangential modulus, see figure "Modulus of elasticity"		
Dynamic modulus of elasticity	Based on DIN 53513	0.25 - 0.55 N/mm²	Depending on frequency, load and thickness, see figure "dynamic stiffness"		
Mechanical loss factor	DIN 53513	0.25	Load-, amplitude- and frequency-dependent		
Compression set	Based on DIN EN ISO 1856	2.0 %	Measured 30 minutes after decompression with 50% deformation / 23 °C after 72 hrs		
Tensile strength	Based on DIN EN ISO 1798	0.4 N/mm²			
Elongation at break	Based on DIN EN ISO 1798	220 %			
Tear resistance	Based on DIN ISO 34-1	2.0 N/mm			
Fire behaviour	DIN 4102 DIN EN 13501	B2 E	Normal flammability acceptable fire behaviour		
Sliding friction	REGUPOL-laboratory REGUPOL-laboratory	0.7	Steel (dry) Concrete (dry)		
Compression hardness	Based on DIN EN ISO 3386-2	22 kPa	Compressive stress at 25 % deformation test specimen h = 25 mm		
Rebound elasticity	Based on DIN EN ISO 8307	35 %	dependent on thickness, test specimen h = 25 mm		
Force reduction	DIN EN 14904	61%	dependent on thickness, test specimen h = 25 mm		

2.50

Examination of deflection in accordance to DIN EN 826 between two stiff panels. Illustration based on the third loading. Velocity of loading and unloading 20 seconds. Tested at room temperature. Dimensions of test specimens 300 x 300 mm.

Illustration of the isolation efficiency of a single-degree-of-freedom system (SDOF system) on a rigid base with **REGUFOAM vibration 190plus.** Parameter: power transmission (insertion loss) in dB, isolation factor in %.

2.50

Change of the dynamic stiffness due to changes in amplitudes. Average for 5 Hz, 10 Hz and 40 Hz excitation. Sinusoidal excitation at a constant mean load of 0.018 N/mm², dimensions of the specimens 300 x 300 x 25 mm. Natural frequency of a single-degree-of-freedom system (SDOF system) on a rigid base.

Change of the mechanical loss factor due to changes in amplitudes. Sinusoidal excitation at a constant mean load of 0.018 N/mm², dimensions of the specimens 300 x 300 x 25 mm.

2.50

0.85

0.60

0.45

0.30

0.22

990plus

810plus

740plus

680plus

570plus

0.00

Exclusion of Liability

Technical services and offers based on these are subject to our General Terms and Conditions of sale, a copy of which can be found on our website www. berleburger.com. Special attention should be paid to paragraphs 4 and 5. In so far, please be advised as follows:

Our expertise is the development and manufacturing of products. With our recommendation we can only assist you in selecting a product that is suitable for your demand. However, we cannot act as your architect or consulting expert. This would only be possible subject to a separately concluded service contract that we would have to bill you for. Such contracts are not part of our scope of supply and services. Hence, our recommendation does not lay claim for its correctness. Guarantees do only apply to the technical properties of the material supplied.

Comment on tolerances: All technical values correspond to our current state of knowledge and are to be understood as reference values only. These values can be subject to considerable variabilities due to production and/or material reasons as well as due to outside influences (temperature, humidity etc.). Thus special agreements on material parameters might be necessary on a case-by-case basis.

2.50

0.85

0.60

0.45

0.30

0.22

0.11

0.055

0.042

0.028

0.018

0.011

0.00 ⊥ N/mm²

990plus

810plus

740plus

680plus

570plus

510plus

400plus

300plus

270plus

220plus

190plus

150plus

Forms of delivery, ex warehouse

Rolls

Thickness: 12.5 and 25 mm, special thicknesses on requestLength:5,000 mm, special lengths availableWidth:1,500 mm

Stripping/Plates

On request: Die-cutting, water-jet cutting, self-adhesive versions possible

Technical Details

Maximum static load bearing capacity 0.028 N/mm²

Maximum dynamic load bearing capacity for intermitted loadings 0 to 0.040 N/mm²

Rare, short term peak loads

up to 0.900 N/mm²

Physical property	Norm	Result	Comment
Static modulus of elasticity	Based on EN 826	0.15 - 0.35 N/mm²	Tangential modulus, see figure "Modulus of elasticity"
Dynamic modulus of elasticity	Based on DIN 53513	0.35 - 0.72 N/mm²	Depending on frequency, load and thickness, see figure "dynamic stiffness"
Mechanical loss factor	DIN 53513	0.22	Load-, amplitude- and frequency-dependent
Compression set	Based on DIN EN ISO 1856	2.3 %	Measured 30 minutes after decompression with 50% deformation / 23 °C after 72 hrs
Tensile strength	Based on DIN EN ISO 1798	0.5 N/mm²	
Elongation at break	Based on DIN EN ISO 1798	180 %	
Tear resistance	Based on DIN ISO 34-1	2.1 N/mm	
Fire behaviour	DIN 4102 DIN EN 13501	B2 E	Normal flammability acceptable fire behaviour
Sliding friction	REGUPOL-laboratory REGUPOL-laboratory	0.7	Steel (dry) Concrete (dry)
Compression hardness	Based on DIN EN ISO 3386-2	39 kPa	Compressive stress at 25 % deformation test specimen h = 25 mm
Rebound elasticity	Based on DIN EN ISO 8307	47 %	dependent on thickness, test specimen h = 25 mm
Force reduction	DIN EN 14904	69 %	dependent on thickness, test specimen h = 25 mm

Examination of deflection in accordance to DIN EN 826 between two stiff panels. Illustration based on the third loading. Velocity of loading and unloading 20 seconds. Tested at room temperature. Dimensions of test specimens 300 x 300 mm.

Illustration of the isolation efficiency of a single-degree-of-freedom system (SDOF system) on a rigid base with **REGUFOAM vibration 220plus.** Parameter: power transmission (insertion loss) in dB, isolation factor in %.

Natural frequency of a single-degree-of-freedom system (SDOF system) considering the dynamic stiffness of **REGUFOAM vibration 220plus** on a rigid base. Dimensions of test specimens 300 x 300 mm.

Change of the mechanical loss factor due to changes in amplitudes. Sinusoidal excitation at a constant mean load of 0.028 N/mm^2 , dimensions of the specimens $300 \times 300 \times 25 \text{ mm}$.

Illustration of the dynamic modulus of elasticity for sinusoidal excitation at a constant mean load and an amplitude of \pm 0.25 mm. Dimensions of specimens 300 x 300 x 25 mm; static modulus of elasticity as a result of the tangent modulus of the spring characteristic. Tested in accordance with DIN 53513.

Illustration of the dynamic stiffness for sinusoidal excitation at a constant mean load and an amplitude of \pm 0.25 mm. Dimensions of specimens 300 x 300 x 25 mm; static stiffness as a result of the tangent modulus of the spring characteristic. Tested in accordance with DIN 53513.

Exclusion of Liability

Technical services and offers based on these are subject to our General Terms and Conditions of sale, a copy of which can be found on our website www. berleburger.com. Special attention should be paid to paragraphs 4 and 5. In so far, please be advised as follows:

Our expertise is the development and manufacturing of products. With our recommendation we can only assist you in selecting a product that is suitable for your demand. However, we cannot act as your architect or consulting expert. This would only be possible subject to a separately concluded service contract that we would have to bill you for. Such contracts are not part of our scope of supply and services. Hence, our recommendation does not lay claim for its correctness. Guarantees do only apply to the technical properties of the material supplied.

Comment on tolerances: All technical values correspond to our current state of knowledge and are to be understood as reference values only. These values can be subject to considerable variabilities due to production and/or material reasons as well as due to outside influences (temperature, humidity etc.). Thus special agreements on material parameters might be necessary on a case-by-case basis.

Û

28|136

Forms of delivery, ex warehouse

Rolls

Thickness: 12.5 and 25 mm, special thicknesses on requestLength:5,000 mm, special lengths availableWidth:1,500 mm

Stripping/Plates

On request: Die-cutting, water-jet cutting, self-adhesive versions possible

Technical Details

Maximum static load bearing capacity 0.042 N/mm²

Maximum dynamic load bearing capacity for intermitted loadings 0 to 0.062 N/mm²

Rare, short term peak loads

up to 1.200 N/mm²

Physical property	Norm	Result	Comment		
Static modulus of elasticity	Based on EN 826	0.25 - 0.45 N/mm²	Tangential modulus, see figure "Modulus of elasticity"		
Dynamic modulus of elasticity	Based on DIN 53513	0.60 - 1.05 N/mm²	Depending on frequency, load and thickness, see figure "dynamic stiffness"		
Mechanical loss factor	DIN 53513	0.2	Load-, amplitude- and frequency-dependent		
Compression set	Based on DIN EN ISO 1856	3.2 %	Measured 30 minutes after decompression with 50% deformation / 23 °C after 72 hrs		
Tensile strength	Based on DIN EN ISO 1798	0.9 N/mm²			
Elongation at break	Based on DIN EN ISO 1798	210 %			
Tear resistance	Based on DIN ISO 34-1	4.5 N/mm			
Fire behaviour	DIN 4102 DIN EN 13501	B2 E	Normal flammability acceptable fire behaviour		
Sliding friction	REGUPOL-laboratory REGUPOL-laboratory	0.7	Steel (dry) Concrete (dry)		
Compression hardness	Based on DIN EN ISO 3386-2	63 kPa	Compressive stress at 25 % deformation test specimen h = 25 mm		
Rebound elasticity	Based on DIN EN ISO 8307	38 %	dependent on thickness, test specimen h = 25 mm		
Force reduction	DIN EN 14904	70 %	dependent on thickness, test specimen h = 25 mm		

2.50

0.85

0.60

0.45

990plus

810plus

740plus

Examination of deflection in accordance to DIN EN 826 between two stiff panels. Illustration based on the third loading. Velocity of loading and unloading 20 seconds. Tested at room temperature. Dimensions of test specimens 300 x 300 mm.

Illustration of the isolation efficiency of a single-degree-of-freedom system (SDOF system) on a rigid base with **REGUFOAM vibration 270plus.** Parameter: power transmission (insertion loss) in dB, isolation factor in %.

2.50

0.85

0.60

990plus

810plus

Change of the mechanical loss factor due to changes in amplitudes. Sinusoidal excitation at a constant mean load of 0.042 N/mm^2 , dimensions of the specimens $300 \times 300 \times 25 \text{ mm}$.

Exclusion of Liability

Technical services and offers based on these are subject to our General Terms and Conditions of sale, a copy of which can be found on our website www. berleburger.com. Special attention should be paid to paragraphs 4 and 5. In so far, please be advised as follows:

Our expertise is the development and manufacturing of products. With our recommendation we can only assist you in selecting a product that is suitable for your demand. However, we cannot act as your architect or consulting expert. This would only be possible subject to a separately concluded service contract that we would have to bill you for. Such contracts are not part of our scope of supply and services. Hence, our recommendation does not lay claim for its correctness. Guarantees do only apply to the technical properties of the material supplied.

Comment on tolerances: All technical values correspond to our current state of knowledge and are to be understood as reference values only. These values can be subject to considerable variabilities due to production and/or material reasons as well as due to outside influences (temperature, humidity etc.). Thus special agreements on material parameters might be necessary on a case-by-case basis.

2.50

0.85

0.60

0.45

0.30

0.22

0.11

0.055

0.042

0.028

0.018

0.011

0.00 ⊥ N/mm²

990plus

810plus

740plus

680plus

570plus

510plus

400plus

300plus

270plus

220plus

190plus

150plus

Forms of delivery, ex warehouse

Rolls

Thickness: 12.5 and 25 mm, special thicknesses on requestLength:5,000 mm, special lengths availableWidth:1,500 mm

Stripping/Plates

On request: Die-cutting, water-jet cutting, self-adhesive versions possible

Technical Details

Maximum static load bearing capacity 0.055 N/mm²

Maximum dynamic load bearing capacity for intermitted loadings 0 to 0.080 N/mm²

Rare, short term peak loads

up to 2.000 N/mm²

Physical property	Norm	Result	Comment		
Static modulus of elasticity	Based on EN 826	0.35 - 0.58 N/mm²	Tangential modulus, see figure "Modulus of elasticity"		
Dynamic modulus of elasticity	Based on DIN 53513	0.68 - 1.25 N/mm²	Depending on frequency, load and thickness, see figure "dynamic stiffness"		
Mechanical loss factor	DIN 53513	0.18	Load-, amplitude- and frequency-dependent		
Compression set	Based on DIN EN ISO 1856	3.4 %	Measured 30 minutes after decompression with 50% deformation / 23 °C after 72 hrs		
Tensile strength	Based on DIN EN ISO 1798	1.2 N/mm²			
Elongation at break	Based on DIN EN ISO 1798	240 %			
Tear resistance	Based on DIN ISO 34-1	4.8 N/mm			
Fire behaviour	DIN 4102 DIN EN 13501	B2 E	Normal flammability acceptable fire behaviour		
Sliding friction	REGUPOL-laboratory REGUPOL-laboratory	0.6 0.75	Steel (dry) Concrete (dry)		
Compression hardness	Based on DIN EN ISO 3386-2	82 kPa	Compressive stress at 25 % deformation test specimen h = 25 mm		
Rebound elasticity	Based on DIN EN ISO 8307	44 %	dependent on thickness, test specimen h = 25 mm		
Force reduction	DIN EN 14904	72 %	dependent on thickness, test specimen h = 25 mm		

Examination of deflection in accordance to DIN EN 826 between two stiff panels. Illustration based on the third loading. Velocity of loading and unloading 20 seconds. Tested at room temperature. Dimensions of test specimens 300 x 300 mm.

Illustration of the isolation efficiency of a single-degree-of-freedom system (SDOF system) on a rigid base with **REGUFOAM vibration 300plus.** Parameter: power transmission (insertion loss) in dB, isolation factor in %.

Natural frequency of a single-degree-of-freedom system (SDOF system) considering the dynamic stiffness of **REGUFOAM vibration 300plus** on a rigid base. Dimensions of test specimens 300 x 300 mm.

Change of the mechanical loss factor due to changes in amplitudes. Sinusoidal excitation at a constant mean load of 0.055 N/mm^2 , dimensions of the specimens $300 \times 300 \times 25 \text{ mm}$.

Exclusion of Liability

Technical services and offers based on these are subject to our General Terms and Conditions of sale, a copy of which can be found on our website www. berleburger.com. Special attention should be paid to paragraphs 4 and 5. In so far, please be advised as follows:

Our expertise is the development and manufacturing of products. With our recommendation we can only assist you in selecting a product that is suitable for your demand. However, we cannot act as your architect or consulting expert. This would only be possible subject to a separately concluded service contract that we would have to bill you for. Such contracts are not part of our scope of supply and services. Hence, our recommendation does not lay claim for its correctness. Guarantees do only apply to the technical properties of the material supplied.

Comment on tolerances: All technical values correspond to our current state of knowledge and are to be understood as reference values only. These values can be subject to considerable variabilities due to production and/or material reasons as well as due to outside influences (temperature, humidity etc.). Thus special agreements on material parameters might be necessary on a case-by-case basis.

Û

40|136

Forms of delivery, ex warehouse

Rolls

Thickness: 12.5 and 25 mm, special thicknesses on requestLength:1,500 mm, special lengths availableWidth:1,000 mm

Stripping/Plates

On request: Die-cutting, water-jet cutting, self-adhesive versions possible

Technical Details

Maximum static load bearing capacity 0.110 N/mm²

Maximum dynamic load bearing capacity for intermitted loadings 0 to 0.160 N/mm²

Rare, short term peak loads

up to 3.000 N/mm²

Physical property	Norm	Result	Comment
Static modulus of elasticity	Based on EN 826	0.6 - 1.0 N/mm²	Tangential modulus, see figure "Modulus of elasticity"
Dynamic modulus of elasticity	Based on DIN 53513	1.2 - 2.0 N/mm²	Depending on frequency, load and thickness, see figure "dynamic stiffness"
Mechanical loss factor	DIN 53513	0.17	Load-, amplitude- and frequency-dependent
Compression set	Based on DIN EN ISO 1856	3.9 %	Measured 30 minutes after decompression with 50% deformation / 23 °C after 72 hrs
Tensile strength	Based on DIN EN ISO 1798	1.5 N/mm²	
Elongation at break	Based on DIN EN ISO 1798	220 %	
Tear resistance	Based on DIN ISO 34-1	6.0 N/mm	
Fire behaviour	DIN 4102 DIN EN 13501	B2 E	Normal flammability acceptable fire behaviour
Sliding friction	REGUPOL-laboratory REGUPOL-laboratory	0.7 0.8	Steel (dry) Concrete (dry)
Compression hardness	Based on DIN EN ISO 3386-2	170 kPa	Compressive stress at 25 % deformation test specimen h = 25 mm
Rebound elasticity	Based on DIN EN ISO 8307	57 %	dependent on thickness, test specimen h = 25 mm
Force reduction	DIN EN 14904	68 %	dependent on thickness, test specimen h = 25 mm

2.50

Ĵ

Examination of deflection in accordance to DIN EN 826 between two stiff panels. Illustration based on the third loading. Velocity of loading and unloading 20 seconds. Tested at room temperature. Dimensions of test specimens 300 x 300 mm.

Illustration of the isolation efficiency of a single-degree-of-freedom system (SDOF system) on a rigid base with **REGUFOAM vibration 400plus.** Parameter: power transmission (insertion loss) in dB, isolation factor in %.

Natural frequency of a single-degree-of-freedom system (SDOF system) considering the dynamic stiffness of **REGUFOAM vibration 400plus** on a rigid base. Dimensions of test specimens 300 x 300 mm.

Change of the mechanical loss factor due to changes in amplitudes. Sinusoidal excitation at a constant mean load of 0.110 N/mm^2 , dimensions of the specimens $300 \times 300 \times 25 \text{ mm}$.

Illustration of the dynamic modulus of elasticity for sinusoidal excitation at a constant mean load and an amplitude of \pm 0.25 mm. Dimensions of specimens 300 x 300 x 25 mm; static modulus of elasticity as a result of the tangent modulus of the spring characteristic. Tested in accordance with DIN 53513.

Illustration of the dynamic stiffness for sinusoidal excitation at a constant mean load and an amplitude of \pm 0.25 mm. Dimensions of specimens 300 x 300 x 25 mm; static stiffness as a result of the tangent modulus of the spring characteristic. Tested in accordance with DIN 53513.

2.50

0.85

0.60

0.45

0.30

0.22

0.11

0.055

0.042

0.028

0.018

0.00

N/mm²

990plus

810plus

740plus

680plus

570plus

510plus

300plus

270plus

220plus

190plus

150plus

, / r

Exclusion of Liability

Technical services and offers based on these are subject to our General Terms and Conditions of sale, a copy of which can be found on our website www. berleburger.com. Special attention should be paid to paragraphs 4 and 5. In so far, please be advised as follows:

Our expertise is the development and manufacturing of products. With our recommendation we can only assist you in selecting a product that is suitable for your demand. However, we cannot act as your architect or consulting expert. This would only be possible subject to a separately concluded service contract that we would have to bill you for. Such contracts are not part of our scope of supply and services. Hence, our recommendation does not lay claim for its correctness. Guarantees do only apply to the technical properties of the material supplied.

Comment on tolerances: All technical values correspond to our current state of knowledge and are to be understood as reference values only. These values can be subject to considerable variabilities due to production and/or material reasons as well as due to outside influences (temperature, humidity etc.). Thus special agreements on material parameters might be necessary on a case-by-case basis.

Û

46|136

Forms of delivery, ex warehouse

Rolls

Thickness: 12.5 and 25 mm, special thicknesses on requestLength:1,500 mm, special lengths availableWidth:1,000 mm

Stripping/Plates

On request: Die-cutting, water-jet cutting, self-adhesive versions possible

Technical Details

Maximum static load bearing capacity 0.220 N/mm²

Maximum dynamic load bearing capacity for intermitted loadings 0 to 0.320 N/mm²

Rare, short term peak loads

up to 4.000 N/mm²

Physical property	Norm	Result	Comment
Static modulus of elasticity	Based on EN 826	1.1 - 1.7 N/mm²	Tangential modulus, see figure "Modulus of elasticity"
Dynamic modulus of elasticity	Based on DIN 53513	2.2 - 3.7 N/mm²	Depending on frequency, load and thickness, see figure "dynamic stiffness"
Mechanical loss factor	DIN 53513	0.15	Load-, amplitude- and frequency-dependent
Compression set	Based on DIN EN ISO 1856	4.2 %	Measured 30 minutes after decompression with 50% deformation / 23 °C after 72 hrs
Tensile strength	Based on DIN EN ISO 1798	2.4 N/mm²	
Elongation at break	Based on DIN EN ISO 1798	240 %	
Tear resistance	Based on DIN ISO 34-1	9.3 N/mm	
Fire behaviour	DIN 4102 DIN EN 13501	B2 E	Normal flammability acceptable fire behaviour
Sliding friction	REGUPOL-laboratory REGUPOL-laboratory	0.7 0.8	Steel (dry) Concrete (dry)
Compression hardness	Based on DIN EN ISO 3386-2	330 kPa	Compressive stress at 25 % deformation test specimen h = 25 mm
Rebound elasticity	Based on DIN EN ISO 8307	60 %	dependent on thickness, test specimen h = 25 mm
Force reduction	DIN EN 14904	61 %	dependent on thickness, test specimen h = 25 mm

2.50

Ĵ

Examination of deflection in accordance to DIN EN 826 between two stiff panels. Illustration based on the third loading. Velocity of loading and unloading 20 seconds. Tested at room temperature. Dimensions of test specimens 300 x 300 mm.

Illustration of the isolation efficiency of a single-degree-of-freedom system (SDOF system) on a rigid base with **REGUFOAM vibration 510plus.** Parameter: power transmission (insertion loss) in dB, isolation factor in %.

Change of the dynamic stiffness due to changes in amplitudes. Average for 5 Hz, 10 Hz and 40 Hz excitation. Sinusoidal excitation at a constant mean load of 0.220 N/mm², dimensions of the specimens 300 x 300 x 25 mm. Natural frequency of a single-degree-of-freedom system (SDOF system) on a rigid base.

Change of the mechanical loss factor due to changes in amplitudes. Sinusoidal excitation at a constant mean load of 0.220 N/mm^2 , dimensions of the specimens $300 \times 300 \times 25 \text{ mm}$.

Illustration of the dynamic modulus of elasticity for sinusoidal excitation at a constant mean load and an amplitude of \pm 0.25 mm. Dimensions of specimens 300 x 300 x 25 mm; static modulus of elasticity as a result of the tangent modulus of the spring characteristic. Tested in accordance with DIN 53513.

0.018

2.50

0.85

0.60

0.45

0.30

0.22

0.11

0.055

0.042

0.028

990plus

810plus

740plus

680plus

570plus

510pl

400plus

300plus

270plus

220plus

Exclusion of Liability

Technical services and offers based on these are subject to our General Terms and Conditions of sale, a copy of which can be found on our website www. berleburger.com. Special attention should be paid to paragraphs 4 and 5. In so far, please be advised as follows:

Our expertise is the development and manufacturing of products. With our recommendation we can only assist you in selecting a product that is suitable for your demand. However, we cannot act as your architect or consulting expert. This would only be possible subject to a separately concluded service contract that we would have to bill you for. Such contracts are not part of our scope of supply and services. Hence, our recommendation does not lay claim for its correctness. Guarantees do only apply to the technical properties of the material supplied.

Comment on tolerances: All technical values correspond to our current state of knowledge and are to be understood as reference values only. These values can be subject to considerable variabilities due to production and/or material reasons as well as due to outside influences (temperature, humidity etc.). Thus special agreements on material parameters might be necessary on a case-by-case basis.

Û

52|136

Forms of delivery, ex warehouse

Rolls

Thickness: 12.5 and 25 mm, special thicknesses on requestLength:1,500 mm, special lengths availableWidth:1,000 mm

Stripping/Plates

On request: Die-cutting, water-jet cutting, self-adhesive versions possible

Technical Details

Maximum static load bearing capacity 0.300 N/mm²

Maximum dynamic load bearing capacity for intermitted loadings 0 to 0.420 N/mm²

Rare, short term peak loads

up to 4.500 N/mm²

Physical property	Norm	Result	Comment
Static modulus of elasticity	Based on EN 826	2.6 - 2.9 N/mm²	Tangential modulus, see figure "Modulus of elasticity"
Dynamic modulus of elasticity	Based on DIN 53513	5.3 - 6.5 N/mm²	Depending on frequency, load and thickness, see figure "dynamic stiffness"
Mechanical loss factor	DIN 53513	0.14	Load-, amplitude- and frequency-dependent
Compression set	Based on DIN EN ISO 1856	4.4 %	Measured 30 minutes after decompression with 50% deformation / 23 °C after 72 hrs
Tensile strength	Based on DIN EN ISO 1798	2.9 N/mm²	
Elongation at break	Based on DIN EN ISO 1798	210 %	
Tear resistance	Based on DIN ISO 34-1	14.1 N/mm	
Fire behaviour	DIN 4102 DIN EN 13501	B2 E	Normal flammability acceptable fire behaviour
Sliding friction	REGUPOL-laboratory REGUPOL-laboratory	0.6 0.7	Steel (dry) Concrete (dry)
Compression hardness	Based on DIN EN ISO 3386-2	620 kPa	Compressive stress at 25 % deformation test specimen h = 25 mm
Rebound elasticity	Based on DIN EN ISO 8307	58 %	dependent on thickness, test specimen h = 25 mm
Force reduction	DIN EN 14904	50 %	dependent on thickness, test specimen h = 25 mm

	0.20	
	0.30	570plus
	0.22	510plus
	0.11 -	400plus
	0.055 -	300plus
	0.042 -	270plus
	0.028 -	220plus
З,	0.018 -	190plus
nt	0.011 -	150plus
	N/mm	2
	11/1111	

2.50

0.85

0.60

0.45

sulq066

810plus

740plus

680plus

Ĵ

Examination of deflection in accordance to DIN EN 826 between two stiff panels. Illustration based on the third loading. Velocity of loading and unloading 20 seconds. Tested at room temperature. Dimensions of test specimens 300 x 300 mm.

Illustration of the isolation efficiency of a single-degree-of-freedom system (SDOF system) on a rigid base with **REGUFOAM vibration 570plus**. Parameter: power transmission (insertion loss) in dB, isolation factor in %.

55|136

Change of the mechanical loss factor due to changes in amplitudes. Sinusoidal excitation at a constant mean load of 0.300 N/mm^2 , dimensions of the specimens $300 \times 300 \times 25 \text{ mm}$.

Technical Data | REGUFOAM vibration 570plus | Release 31.03.2021 | www.regupol.com

Exclusion of Liability

Technical services and offers based on these are subject to our General Terms and Conditions of sale, a copy of which can be found on our website www. berleburger.com. Special attention should be paid to paragraphs 4 and 5. In so far, please be advised as follows:

Our expertise is the development and manufacturing of products. With our recommendation we can only assist you in selecting a product that is suitable for your demand. However, we cannot act as your architect or consulting expert. This would only be possible subject to a separately concluded service contract that we would have to bill you for. Such contracts are not part of our scope of supply and services. Hence, our recommendation does not lay claim for its correctness. Guarantees do only apply to the technical properties of the material supplied.

Comment on tolerances: All technical values correspond to our current state of knowledge and are to be understood as reference values only. These values can be subject to considerable variabilities due to production and/or material reasons as well as due to outside influences (temperature, humidity etc.). Thus special agreements on material parameters might be necessary on a case-by-case basis.

Û

58|136

Forms of delivery, ex warehouse

Rolls

Thickness: 12.5 and 25 mm, special thicknesses on requestLength:1,500 mm, special lengths availableWidth:1,000 mm

Stripping/Plates

On request: Die-cutting, water-jet cutting, self-adhesive versions possible

Technical Details

Maximum static load bearing capacity 0.450 N/mm²

Maximum dynamic load bearing capacity for intermitted loadings 0 to 0.620 N/mm²

Rare, short term peak loads

up to 5.000 N/mm²

Physical property	Norm	Result	Comment
Static modulus of elasticity	Based on EN 826	3.8 - 4.1 N/mm²	Tangential modulus, see figure "Modulus of elasticity"
Dynamic modulus of elasticity	Based on DIN 53513	7.0 - 10.0 N/mm²	Depending on frequency, load and thickness, see figure "dynamic stiffness"
Mechanical loss factor	DIN 53513	0.12	Load-, amplitude- and frequency-dependent
Compression set	Based on DIN EN ISO 1856	6.2 %	Measured 30 minutes after decompression with 50% deformation / 23 °C after 72 hrs
Tensile strength	Based on DIN EN ISO 1798	3.6 N/mm²	
Elongation at break	Based on DIN EN ISO 1798	230 %	
Tear resistance	Based on DIN ISO 34-1	18.5 N/mm	
Fire behaviour	DIN 4102 DIN EN 13501	B2 E	Normal flammability acceptable fire behaviour
Sliding friction	REGUPOL-laboratory REGUPOL-laboratory	0.6 0.7	Steel (dry) Concrete (dry)
Compression hardness	Based on DIN EN ISO 3386-2	840 kPa	Compressive stress at 25 % deformation test specimen h = 25 mm
Rebound elasticity	Based on DIN EN ISO 8307	58 %	dependent on thickness, test specimen h = 25 mm
Force reduction	DIN EN 14904	44 %	dependent on thickness, test specimen h = 25 mm

2.50

0.85

0.60

990plus

810plus

740plus

Examination of deflection in accordance to DIN EN 826 between two stiff panels. Illustration based on the third loading. Velocity of loading and unloading 20 seconds. Tested at room temperature. Dimensions of test specimens 300 x 300 mm.

Illustration of the isolation efficiency of a single-degree-of-freedom system (SDOF system) on a rigid base with **REGUFOAM vibration 680plus.** Parameter: power transmission (insertion loss) in dB, isolation factor in %.

2.50

0.85

990plus

Technical Data | **REGUFOAM vibration 680plus** | Release 31.03.2021 | www.regupol.com

Change of the mechanical loss factor due to changes in amplitudes. Sinusoidal excitation at a constant mean load of 0.450 N/mm^2 , dimensions of the specimens $300 \times 300 \times 25 \text{ mm}$.

Illustration of the dynamic modulus of elasticity for sinusoidal excitation at a constant mean load and an amplitude of \pm 0.25 mm. Dimensions of specimens 300 x 300 x 25 mm; static modulus of elasticity as a result of the tangent modulus of the spring characteristic. Tested in accordance with DIN 53513.

Illustration of the dynamic stiffness for sinusoidal excitation at a constant mean load and an amplitude of \pm 0.25 mm. Dimensions of specimens 300 x 300 x 25 mm; static stiffness as a result of the tangent modulus of the spring characteristic. Tested in accordance with DIN 53513.

2.50

0.85

0.60

0.45

0.30

0.22

0.11

0.055

0.042

0.028

0.018

0.011

990plus

810plus

740plus

680plus

570plus

510plus

400plus

300plus

270plus

220plus

190plus

150plus

Exclusion of Liability

Technical services and offers based on these are subject to our General Terms and Conditions of sale, a copy of which can be found on our website www. berleburger.com. Special attention should be paid to paragraphs 4 and 5. In so far, please be advised as follows:

Our expertise is the development and manufacturing of products. With our recommendation we can only assist you in selecting a product that is suitable for your demand. However, we cannot act as your architect or consulting expert. This would only be possible subject to a separately concluded service contract that we would have to bill you for. Such contracts are not part of our scope of supply and services. Hence, our recommendation does not lay claim for its correctness. Guarantees do only apply to the technical properties of the material supplied.

Comment on tolerances: All technical values correspond to our current state of knowledge and are to be understood as reference values only. These values can be subject to considerable variabilities due to production and/or material reasons as well as due to outside influences (temperature, humidity etc.). Thus special agreements on material parameters might be necessary on a case-by-case basis.

= REGUPOL

Forms of delivery, ex warehouse

Rolls

Thickness: 12.5 and 25 mm, special thicknesses on requestLength:1,500 mm, special lengths availableWidth:1,000 mm

Stripping/Plates

On request: Die-cutting, water-jet cutting, self-adhesive versions possible

Technical Details

Maximum static load bearing capacity 0.600 N/mm²

Maximum dynamic load bearing capacity for intermitted loadings 0 to 0.850 N/mm²

Rare, short term peak loads

up to 6.000 N/mm²

Physical property	Norm	Result	Comment
Static modulus of elasticity	Based on EN 826	4.3 - 5.9 N/mm²	Tangential modulus, see figure "Modulus of elasticity"
Dynamic modulus of elasticity	Based on DIN 53513	8.9 - 13.0 N/mm²	Depending on frequency, load and thickness, see figure "dynamic stiffness"
Mechanical loss factor	DIN 53513	0.11	Load-, amplitude- and frequency-dependent
Compression set	Based on DIN EN ISO 1856	4.8 %	Measured 30 minutes after decompression with 50% deformation / 23 °C after 72 hrs
Tensile strength	Based on DIN EN ISO 1798	4.0 N/mm²	
Elongation at break	Based on DIN EN ISO 1798	210 %	
Tear resistance	Based on DIN ISO 34-1	19.0 N/mm	
Fire behaviour	DIN 4102 DIN EN 13501	B2 E	Normal flammability acceptable fire behaviour
Sliding friction	REGUPOL-laboratory REGUPOL-laboratory	0.6 0.7	Steel (dry) Concrete (dry)
Compression hardness	Based on DIN EN ISO 3386-2	1 050 kPa	Compressive stress at 25 % deformation test specimen h = 25 mm
Rebound elasticity	Based on DIN EN ISO 8307	59%	dependent on thickness, test specimen h = 25 mm
Force reduction	DIN EN 14904	39%	dependent on thickness, test specimen h = 25 mm

2.50

Examination of deflection in accordance to DIN EN 826 between two stiff panels. Illustration based on the third loading. Velocity of loading and unloading 20 seconds. Tested at room temperature. Dimensions of test specimens 250 x 250 mm.

Illustration of the isolation efficiency of a single-degree-of-freedom system (SDOF system) on a rigid base with **REGUFOAM vibration 740plus**. Parameter: power transmission (insertion loss) in dB, isolation factor in %.

2.50

Technical Data | REGUFOAM vibration 740plus | Release 31.03.2021 | www.regupol.com

Change of the mechanical loss factor due to changes in amplitudes. Sinusoidal excitation at a constant mean load of 0.600 N/mm^2 , dimensions of the specimens $250 \times 250 \times 50 \text{ mm}$.

Illustration of the dynamic stiffness for sinusoidal excitation at a constant mean load and an amplitude of \pm 0.25 mm. Dimensions of specimens 250 x 250 x 25 mm; static stiffness as a result of the tangent modulus of the spring characteristic. Tested in accordance with DIN 53513.

2.50

0.85

0.60

0.45

0.30

0.22

0.11

0.055

0.042

0.028

0.018

0.011

990plus

810plus

740nlus

680plus

570plus

510plus

400plus

300plus

270plus

220plus

190plus

Ĵ

Exclusion of Liability

Technical services and offers based on these are subject to our General Terms and Conditions of sale, a copy of which can be found on our website www. berleburger.com. Special attention should be paid to paragraphs 4 and 5. In so far, please be advised as follows:

Our expertise is the development and manufacturing of products. With our recommendation we can only assist you in selecting a product that is suitable for your demand. However, we cannot act as your architect or consulting expert. This would only be possible subject to a separately concluded service contract that we would have to bill you for. Such contracts are not part of our scope of supply and services. Hence, our recommendation does not lay claim for its correctness. Guarantees do only apply to the technical properties of the material supplied.

Comment on tolerances: All technical values correspond to our current state of knowledge and are to be understood as reference values only. These values can be subject to considerable variabilities due to production and/or material reasons as well as due to outside influences (temperature, humidity etc.). Thus special agreements on material parameters might be necessary on a case-by-case basis.

70|136

Forms of delivery, ex warehouse

Rolls

Thickness: 12.5 and 25 mm, special thicknesses on requestLength:1,500 mm, special lengths availableWidth:1,000 mm

Stripping/Plates

On request: Die-cutting, water-jet cutting, self-adhesive versions possible

Technical Details

Maximum static load bearing capacity 0.850 N/mm²

Maximum dynamic load bearing capacity for intermitted loadings 0 to 1.200 N/mm²

Rare, short term peak loads

up to 7.000 N/mm²

Physical property	Norm	Result	Comment
Static modulus of elasticity	Based on EN 826	5.4 - 8.0 N/mm²	Tangential modulus, see figure "Modulus of elasticity"
Dynamic modulus of elasticity	Based on DIN 53513	11.0 - 16.5 N/mm²	Depending on frequency, load and thickness, see figure "dynamic stiffness"
Mechanical loss factor	DIN 53513	0.10	Load-, amplitude- and frequency-dependent
Compression set	Based on DIN EN ISO 1856	7.9%	Measured 30 minutes after decompression with 50% deformation / 23 °C after 72 hrs
Tensile strength	Based on DIN EN ISO 1798	4.6 N/mm²	
Elongation at break	Based on DIN EN ISO 1798	230 %	
Tear resistance	Based on DIN ISO 34-1	20.0 N/mm	
Fire behaviour	DIN 4102 DIN EN 13501	B2 E	Normal flammability acceptable fire behaviour
Sliding friction	REGUPOL-laboratory REGUPOL-laboratory	0.6 0.75	Steel (dry) Concrete (dry)
Compression hardness	Based on DIN EN ISO 3386-2	1 241 kPa	Compressive stress at 25 % deformation test specimen h = 25 mm
Rebound elasticity	Based on DIN EN ISO 8307	58 %	dependent on thickness, test specimen h = 25 mm
Force reduction	DIN EN 14904	35 %	dependent on thickness, test specimen h = 25 mm

2.50

0.85

990plus

Examination of deflection in accordance to DIN EN 826 between two stiff panels. Illustration based on the third loading. Velocity of loading and unloading 20 seconds. Tested at room temperature. Dimensions of test specimens 250 x 250 mm.

Illustration of the isolation efficiency of a single-degree-of-freedom system (SDOF system) on a rigid base with **REGUFOAM vibration 810plus.** Parameter: power transmission (insertion loss) in dB, isolation factor in %.

Change of the dynamic stiffness due to changes in amplitudes. Average for 5 Hz, 10 Hz and 40 Hz excitation. Sinusoidal excitation at a constant mean load of 0.850 N/mm², dimensions of the specimens 250 x 250 x 50 mm. Natural frequency of a single-degree-of-freedom system (SDOF system) on a rigid base.

Change of the mechanical loss factor due to changes in amplitudes. Sinusoidal excitation at a constant mean load of 0.850 N/mm^2 , dimensions of the specimens $250 \times 250 \times 250 \text{ mm}$.

Illustration of the dynamic modulus of elasticity for sinusoidal excitation at a constant mean load and an amplitude of \pm 0.10 mm. Dimensions of specimens 250 x 250 x 25 mm; static modulus of elasticity as a result of the tangent modulus of the spring characteristic. Tested in accordance with DIN 53513.

N/mm²

2.50

0.85

0.60

0.45

990plus

740plus

Exclusion of Liability

Technical services and offers based on these are subject to our General Terms and Conditions of sale, a copy of which can be found on our website www. berleburger.com. Special attention should be paid to paragraphs 4 and 5. In so far, please be advised as follows:

Our expertise is the development and manufacturing of products. With our recommendation we can only assist you in selecting a product that is suitable for your demand. However, we cannot act as your architect or consulting expert. This would only be possible subject to a separately concluded service contract that we would have to bill you for. Such contracts are not part of our scope of supply and services. Hence, our recommendation does not lay claim for its correctness. Guarantees do only apply to the technical properties of the material supplied.

Comment on tolerances: All technical values correspond to our current state of knowledge and are to be understood as reference values only. These values can be subject to considerable variabilities due to production and/or material reasons as well as due to outside influences (temperature, humidity etc.). Thus special agreements on material parameters might be necessary on a case-by-case basis.

Û

76 | 136

2.50

0.85

0.60

0.45

0.30

0.22

0.11

0.055

0.042

0.028

0.018

0.011

0.00 ⊥ N/mm²

810plus

740plus

680plus

570plus

510plus

400plus

300plus

270plus

220plus

190plus

150plus

Forms of delivery, ex warehouse

Rolls

Thickness: 12.5 and 25 mm, special thicknesses on requestLength:1,500 mm, special lengths availableWidth:1,000 mm

Stripping/Plates

On request: Die-cutting, water-jet cutting, self-adhesive versions possible

Technical Details

Maximum static load bearing capacity 2.500 N/mm²

Maximum dynamic load bearing capacity for intermitted loadings 0 to 3.500 N/mm²

Rare, short term peak loads

up to 8.000 N/mm²

Physical property	Norm	Result	Comment
Static modulus of elasticity	Based on EN 826	20.0 - 78.0 N/mm²	Tangential modulus, see figure "Modulus of elasticity"
Dynamic modulus of elasticity	Based on DIN 53513	41.0 - 160.0 N/mm²	Depending on frequency, load and thickness, see figure "dynamic stiffness"
Mechanical loss factor	DIN 53513	0.09	Load-, amplitude- and frequency-dependent
Compression set	Based on DIN EN ISO 1856	8.6 %	Measured 30 minutes after decompression with 50% deformation / 23 °C after 72 hrs
Tensile strength	Based on DIN EN ISO 1798	6.9 N/mm²	
Elongation at break	Based on DIN EN ISO 1798	190 %	
Tear resistance	Based on DIN ISO 34-1	34.5 N/mm	
Fire behaviour	DIN 4102 DIN EN 13501	B2 E	Normal flammability acceptable fire behaviour
Sliding friction	REGUPOL-laboratory REGUPOL-laboratory	0.5 0.6	Steel (dry) Concrete (dry)
Compression hardness	Based on DIN EN ISO 3386-2	3 640 kPa	Compressive stress at 25 % deformation test specimen h = 25 mm
Rebound elasticity	Based on DIN EN ISO 8307	55 %	dependent on thickness, test specimen h = 25 mm
Force reduction	DIN EN 14904	20 %	dependent on thickness, test specimen h = 25 mm

a rigid base with **REGUFOAM vibration 990plus.** Parameter: power transmission (insertion loss) in dB, isolation factor in %.

N/mm²

0.011

2.50

0.85

0.60

0.45

0.30

0.22

0.11

0.055

0.042

0.028

0.018

1066

810plus

740plus

680plus

570plus

510plus

400plus

300plus

270plus

220plus

190plus

150plus

Illustration of the isolation efficiency of a single-degree-of-freedom system (SDOF system) on

Influence of Amplitude

In order to get information of changes in mechanical loss or dynamic stiffness due to changes in amplitudes please ask technical staff of **REGUPOL**.

Ĵ

Illustration of the dynamic modulus of elasticity for sinusoidal excitation at a constant mean load and an amplitude of \pm 0.10 mm. Dimensions of specimens 125 x 125 x 25 mm; static modulus of elasticity as a result of the tangent modulus of the spring characteristic. Tested in accordance with DIN 53513.

Exclusion of Liability

Technical services and offers based on these are subject to our General Terms and Conditions of sale, a copy of which can be found on our website www. berleburger.com. Special attention should be paid to paragraphs 4 and 5. In so far, please be advised as follows:

Our expertise is the development and manufacturing of products. With our recommendation we can only assist you in selecting a product that is suitable for your demand. However, we cannot act as your architect or consulting expert. This would only be possible subject to a separately concluded service contract that we would have to bill you for. Such contracts are not part of our scope of supply and services. Hence, our recommendation does not lay claim for its correctness. Guarantees do only apply to the technical properties of the material supplied.

Comment on tolerances: All technical values correspond to our current state of knowledge and are to be understood as reference values only. These values can be subject to considerable variabilities due to production and/or material reasons as well as due to outside influences (temperature, humidity etc.). Thus special agreements on material parameters might be necessary on a case-by-case basis.

Û

82|136

TECHNICAL DETAILS REGUPOL VIBRATION

Forms of delivery, ex warehouse

Rolls

Thickness: 17 mm, dimpledLength:10,000 mm, special lengths availableWidth:1,250 mm

Stripping/Plates On request: Die-cutting, self-adhesive versions possible

Technical Details

Maximum static load bearing capacity 0.020 N/mm²

Rare, short term peak loads up to 0.050 N/mm²

The material must be carefully and permanently profected against moisture during transport, storage, processing and use. Wet material may nof be used.

N/mm²

0

1.50

0.80

0.30

0.15

0.12

0.10

0.05

0.02

1000

800

550

480

450

400

300

200

Physical property	Norm	Result	Comment
Static modulus of elasticity	Based on EN 826	0.02 - 0.08 N/mm²	Tangential modulus, see figure "Modulus of elasticity"
Dynamic modulus of elasticity	Based on DIN 53513	0.05 - 0.38 N/mm²	Depending on frequency, load and thickness, see figure "dynamic stiffness"
Mechanical loss factor	DIN 53513	0.22	Load-, amplitude- and frequency-dependent
Compression set	Based on DIN EN ISO 1856	3.1%	Measured 30 minutes after decompression with 50% deformation / 23 °C after 72 hrs
Tensile strength	Based on DIN EN ISO 1798	0.12 N/mm²	
Elongation at break	Based on DIN EN ISO 1798	40 %	
Tear resistance	Based on DIN ISO 34-1	1.0 N/mm	
Fire behaviour	DIN 4102 DIN EN 13501	B2 E	Normal flammability acceptable fire behaviour
Sliding friction	REGUPOL-laboratory REGUPOL-laboratory	0.7 0.8	Steel (dry) Concrete (dry)
Compression hardness	Based on DIN EN ISO 3386-2	14 kPa	Compressive stress at 25 % deformation test specimen h = 51 mm
Rebound elasticity	Based on DIN EN ISO 8307	14 %	dependent on thickness, test specimen h = 51 mm
Force reduction	DIN EN 14904	73 %	dependent on thickness, test specimen h = 51 mm

Ĵ

Ĵ

Illustration of the isolation efficiency of a single-degree-of-freedom system (SDOF system) on a rigid base with **REGUPOL vibration 200.** Parameter: power transmission (insertion loss) in dB, isolation factor in %.

1.50

0.80

0.30

0.15

0.12

0.10

0.05

0.02

1000

800

550

480

450

400

300

200

Change of the mechanical loss factor due to changes in amplitudes. Sinusoidal excitation at a constant mean load of 0.011 N/mm^2 , dimensions of the specimens $300 \times 300 \times 51 \text{ mm}$.

Illustration of the dynamic modulus of elasticity for sinusoidal excitation at a constant mean load and an amplitude of \pm 0.25 mm. Dimensions of specimens 300 x 300 x 34 mm; static modulus of elasticity as a result of the tangent modulus of the spring characteristic. Tested in accordance with DIN 53513.

1.50

Exclusion of Liability

Technical services and offers based on these are subject to our General Terms and Conditions of sale, a copy of which can be found on our website www. berleburger.com. Special attention should be paid to paragraphs 4 and 5. In so far, please be advised as follows:

Our expertise is the development and manufacturing of products. With our recommendation we can only assist you in selecting a product that is suitable for your demand. However, we cannot act as your architect or consulting expert. This would only be possible subject to a separately concluded service contract that we would have to bill you for. Such contracts are not part of our scope of supply and services. Hence, our recommendation does not lay claim for its correctness. Guarantees do only apply to the technical properties of the material supplied.

Comment on tolerances: All technical values correspond to our current state of knowledge and are to be understood as reference values only. These values can be subject to considerable variabilities due to production and/or material reasons as well as due to outside influences (temperature, humidity etc.). Thus special agreements on material parameters might be necessary on a case-by-case basis.

Forms of delivery, ex warehouse

Rolls

Thickness: 17 mm, dimpledLength:10,000 mm, special lengths availableWidth:1,250 mm

Stripping/Plates On request: Die-cutting, water-jet cutting, self-adhesive versions possible

Technical Details

Maximum static load bearing capacity 0.050 N/mm²

Rare, short term peak loads up to 0.080 N/mm²

N/mm²

1.50

Physical property	Norm	Result	Comment
Static modulus of elasticity	Based on EN 826	0.1 - 0.2 N/mm²	Tangential modulus, see figure "Modulus of elasticity"
Dynamic modulus of elasticity	Based on DIN 53513	0.2 - 1.4 N/mm²	Depending on frequency, load and thickness, see figure "dynamic stiffness"
Mechanical loss factor	DIN 53513	0.18	Load-, amplitude- and frequency-dependent
Compression set	Based on DIN EN ISO 1856	1.6 %	Measured 30 minutes after decompression with 50% deformation / 23 °C after 72 hrs
Tensile strength	Based on DIN EN ISO 1798	0.3 N/mm²	
Elongation at break	Based on DIN EN ISO 1798	55 %	
Tear resistance	Based on DIN ISO 34-1	2.1 N/mm	
Fire behaviour	DIN 4102 DIN EN 13501	B2 E	Normal flammability acceptable fire behaviour
Sliding friction	REGUPOL-laboratory REGUPOL-laboratory	0.7 0.8	Steel (dry) Concrete (dry)
Compression hardness	Based on DIN EN ISO 3386-2	50 kPa	Compressive stress at 25 % deformation test specimen h = 51 mm
Rebound elasticity	Based on DIN EN ISO 8307	10 %	dependent on thickness, test specimen h = 51 mm
Force reduction	DIN EN 14904	73 %	dependent on thickness, test specimen h = 51 mm
Ozone resistance	DIN EN ISO 17025	Cracking stage 0	

Ĵ

Illustration of the isolation efficiency of a single-degree-of-freedom system (SDOF system) on a rigid base with **REGUPOL vibration 300.** Parameter: power transmission (insertion loss) in dB, isolation factor in %.

1.50

0.80

0.30

1000

800

550

480

450

400

200

Change of the dynamic stiffness due to changes in amplitudes. Average for 5 Hz, 10 Hz and 40 Hz excitation. Sinusoidal excitation at a constant mean load of 0.05 N/mm², dimensions of the specimens 300 x 300 x 51 mm. Natural frequency of a single-degree-of-freedom system (SDOF system) on a rigid base.

Change of the mechanical loss factor due to changes in amplitudes. Sinusoidal excitation at a constant mean load of 0.05 N/mm^2 , dimensions of the specimens $300 \times 300 \times 51 \text{ mm}$.

Illustration of the dynamic modulus of elasticity for sinusoidal excitation at a constant mean load and an amplitude of \pm 0.25 mm. Dimensions of specimens 300 x 300 x 34 mm; static modulus of elasticity as a result of the tangent modulus of the spring characteristic. Tested in accordance with DIN 53513.

Illustration of the dynamic stiffness for sinusoidal excitation at a constant mean load and an amplitude of ± 0.25 mm. Dimensions of specimens 300 x 300 x 34 mm; static stiffness as a result of the tangent modulus of the spring characteristic. Tested in accordance with DIN 53513.

Technical Data | REGUPOL vibration 300 | Release 31.03.2021 | www.regupol.com

1.50

0.80

0.30

0.15

0.12

0.10

0.05

0.02

0

N/mm²

1000

800

550

480

450

400

200

Exclusion of Liability

Technical services and offers based on these are subject to our General Terms and Conditions of sale, a copy of which can be found on our website www. berleburger.com. Special attention should be paid to paragraphs 4 and 5. In so far, please be advised as follows:

Our expertise is the development and manufacturing of products. With our recommendation we can only assist you in selecting a product that is suitable for your demand. However, we cannot act as your architect or consulting expert. This would only be possible subject to a separately concluded service contract that we would have to bill you for. Such contracts are not part of our scope of supply and services. Hence, our recommendation does not lay claim for its correctness. Guarantees do only apply to the technical properties of the material supplied.

Comment on tolerances: All technical values correspond to our current state of knowledge and are to be understood as reference values only. These values can be subject to considerable variabilities due to production and/or material reasons as well as due to outside influences (temperature, humidity etc.). Thus special agreements on material parameters might be necessary on a case-by-case basis.

Forms of delivery, ex warehouse

Rolls

Thickness: 15 mm, dimpled Length: 10,000 mm, special lengths available Width: 1,250 mm

Stripping/Plates On request: Die-cutting, water-jet cutting, self-adhesive versions possible

Technical Details

Maximum static load bearing capacity 0.100 N/mm²

Rare, short term peak loads

up to 0.150 N/mm²

1.50 1000 0.80 800 0.30 550 0.15 480 0.12 450 0.10 004 0.05 300 0.02 200 0

N/mm²

Physical property	Norm	Result	Comment
Static modulus of elasticity	Based on EN 826	0.30 - 0.55 N/mm²	Tangential modulus, see figure "Modulus of elasticity"
Dynamic modulus of elasticity	Based on DIN 53513	0.9 - 2.4 N/mm²	Depending on frequency, load and thickness, see figure "dynamic stiffness"
Mechanical loss factor	DIN 53513	0.17	Load-, amplitude- and frequency-dependent
Compression set	Based on DIN EN ISO 1856	2.1%	Measured 30 minutes after decompression with 50% deformation / 23 °C after 72 hrs
Tensile strength	Based on DIN EN ISO 1798	0.34 N/mm²	
Elongation at break	Based on DIN EN ISO 1798	55 %	
Tear resistance	Based on DIN ISO 34-1	3.2 N/mm	
Fire behaviour	DIN 4102 DIN EN 13501	B2 E	Normal flammability acceptable fire behaviour
Sliding friction	REGUPOL-laboratory REGUPOL-laboratory	0.7 0.8	Steel (dry) Concrete (dry)
Compression hardness	Based on DIN EN ISO 3386-2	180 kPa	Compressive stress at 25 % deformation test specimen h = 60 mm
Rebound elasticity	Based on DIN EN ISO 8307	22 %	dependent on thickness, test specimen h = 60 mm
Force reduction	DIN EN 14904	73 %	dependent on thickness, test specimen h = 60 mm
Ozone resistance	DIN EN ISO 17025	Cracking stage O	

Ĵ

Illustration of the isolation efficiency of a single-degree-of-freedom system (SDOF system) on a rigid base with **REGUPOL vibration 400**. Parameter: power transmission (insertion loss) in dB, isolation factor in %.

Technical Data | REGUPOL vibration 400 | Release 31.03.2021 | www.regupol.com

Change of the dynamic stiffness due to changes in amplitudes. Average for 5 Hz, 10 Hz and 40 Hz excitation. Sinusoidal excitation at a constant mean load of 0.10 N/mm², dimensions of the specimens 300 x 300 x 60 mm. Natural frequency of a single-degree-of-freedom system (SDOF system) on a rigid base.

Change of the mechanical loss factor due to changes in amplitudes. Sinusoidal excitation at a constant mean load of 0.10 N/mm^2 , dimensions of the specimens $300 \times 300 \times 60 \text{ mm}$.

Illustration of the dynamic modulus of elasticity for sinusoidal excitation at a constant mean load and an amplitude of \pm 0.25 mm. Dimensions of specimens 300 x 300 x 45 mm; static modulus of elasticity as a result of the tangent modulus of the spring characteristic. Tested in accordance with DIN 53513.

Illustration of the dynamic stiffness for sinusoidal excitation at a constant mean load and an amplitude of \pm 0.25 mm. Dimensions of specimens 300 x 300 x 45 mm; static stiffness as a result of the tangent modulus of the spring characteristic. Tested in accordance with DIN 53513.

1.50

0.80

0.30

0.15

0.12

0.10

0.05

0.02

0

N/mm²

1000

800

550

480

450

a

300

200

Exclusion of Liability

Technical services and offers based on these are subject to our General Terms and Conditions of sale, a copy of which can be found on our website www. berleburger.com. Special attention should be paid to paragraphs 4 and 5. In so far, please be advised as follows:

Our expertise is the development and manufacturing of products. With our recommendation we can only assist you in selecting a product that is suitable for your demand. However, we cannot act as your architect or consulting expert. This would only be possible subject to a separately concluded service contract that we would have to bill you for. Such contracts are not part of our scope of supply and services. Hence, our recommendation does not lay claim for its correctness. Guarantees do only apply to the technical properties of the material supplied.

Comment on tolerances: All technical values correspond to our current state of knowledge and are to be understood as reference values only. These values can be subject to considerable variabilities due to production and/or material reasons as well as due to outside influences (temperature, humidity etc.). Thus special agreements on material parameters might be necessary on a case-by-case basis.

Forms of delivery, ex warehouse

Plates

Thickness: 25 and 50 mm, special thicknesses availableLength:1,000 mmWidth:500 mm

Norm

Technical Details

Maximum static load bearing capacity 0.120 N/mm²

Rare, short term peak loads up to 0.180 N/mm²

Physical property

Comment

N/mm²

Static modulus of elasticity Based on EN 826 0.2 - 0.4 N/mm² Tangential modulus, see figure "Modulus of elasticity" Based on DIN 53513 0.45 - 2.70 N/mm² Dynamic modulus of elasticity Depending on frequency, load and thickness, see figure "dynamic stiffness" DIN 53513 Mechanical loss factor 0.17 Load-, amplitude- and frequency-dependent Based on 4.1% Measured 30 minutes after decompression Compression set DIN EN ISO 1856 with 50% deformation / 23 °C after 72 hrs Tensile strength Based on 0.15 N/mm² DIN EN ISO 1798 Based on 40 % Elongation at break DIN EN ISO 1798 Tear resistance Based on DIN ISO 34-1 1.9 N/mm Fire behaviour DIN 4102 Β2 Normal flammability DIN EN 13501 Е acceptable fire behaviour Sliding friction 0.5 Steel (dry) **REGUPOL-laboratory REGUPOL-laboratory** 0.6 Concrete (dry) Compression hardness 83 kPa Compressive stress at 25 % deformation Based on **DIN EN ISO 3386-2** test specimen h = 50 mm Rebound elasticity Based on 42.7 % dependent on thickness, DIN EN ISO 8307 test specimen h = 50 mm Force reduction 74 % DIN EN 14904 dependent on thickness, test specimen h = 50 mm Ozone resistance **DIN EN ISO 17025** Cracking stage 0

Result

Illustration of the isolation efficiency of a single-degree-of-freedom system (SDOF system) on a rigid base with **REGUPOL vibration 450**. Parameter: power transmission (insertion loss) in dB, isolation factor in %.

Change of the mechanical loss factor due to changes in amplitudes. Sinusoidal excitation at a constant mean load of 0.10 N/mm², dimensions of the specimens $300 \times 300 \times 50$ mm.

Illustration of the dynamic modulus of elasticity for sinusoidal excitation at a constant mean load and an amplitude of \pm 0.25 mm. Dimensions of specimens 300 x 300 x 50 mm; static modulus of elasticity as a result of the tangent modulus of the spring characteristic. Tested in accordance with DIN 53513.

Illustration of the dynamic stiffness for sinusoidal excitation at a constant mean load and an amplitude of \pm 0.25 mm. Dimensions of specimens 300 x 300 x 50 mm; static stiffness as a result of the tangent modulus of the spring characteristic. Tested in accordance with DIN 53513.

1.50 1000 0.80 800 0,30 550 0.15 480 0.12 450 0.10 400 0.05 300 0.02 200 0 N/mm²

Exclusion of Liability

Technical services and offers based on these are subject to our General Terms and Conditions of sale, a copy of which can be found on our website www. berleburger.com. Special attention should be paid to paragraphs 4 and 5. In so far, please be advised as follows:

Our expertise is the development and manufacturing of products. With our recommendation we can only assist you in selecting a product that is suitable for your demand. However, we cannot act as your architect or consulting expert. This would only be possible subject to a separately concluded service contract that we would have to bill you for. Such contracts are not part of our scope of supply and services. Hence, our recommendation does not lay claim for its correctness. Guarantees do only apply to the technical properties of the material supplied.

Comment on tolerances: All technical values correspond to our current state of knowledge and are to be understood as reference values only. These values can be subject to considerable variabilities due to production and/or material reasons as well as due to outside influences (temperature, humidity etc.). Thus special agreements on material parameters might be necessary on a case-by-case basis.

Forms of delivery, ex warehouse

Rolls

Thickness: 15 mm Length: 10,000 mm, special lengths available Width: 1,250 mm

Stripping/Plates On request: Die-cutting, water-jet cutting, self-adhesive versions possible

Technical Details

Maximum static load bearing capacity 0.150 N/mm²

Rare, short term peak loads up to 0.250 N/mm²

0.30 0.15 0.12 0.12 0.10 0.10 0.05 0.00

N/mm²

1.50

0.80

1000

800

Physical property Norm Result Comment Static modulus of elasticity Based on EN 826 0.25 - 0.80 N/mm² Tangential modulus, see figure "Modulus of elasticity" Based on DIN 53513 1.2 - 3.3 N/mm² Dynamic modulus of elasticity Depending on frequency, load and thickness, see figure "dynamic stiffness" DIN 53513 Mechanical loss factor 0.17 Load-, amplitude- and frequency-dependent Based on 3.0 % Measured 30 minutes after decompression Compression set DIN EN ISO 1856 with 50% deformation / 23 °C after 72 hrs Tensile strength Based on 0.36 N/mm² DIN EN ISO 1798 Elongation at break Based on 55 % DIN EN ISO 1798 Tear resistance Based on DIN ISO 34-1 4.5 N/mm Fire behaviour DIN 4102 B2 Normal flammability DIN EN 13501 Е acceptable fire behaviour Sliding friction 0.7 **REGUPOL-laboratory** Steel (dry) **REGUPOL-laboratory** 0.8 Concrete (dry) Compression hardness 220 kPa Compressive stress at 25 % deformation Based on **DIN EN ISO 3386-2** test specimen h = 60 mm Rebound elasticity Based on 31% dependent on thickness, DIN EN ISO 8307 test specimen h = 60 mm Force reduction 72% DIN EN 14904 dependent on thickness, test specimen h = 60 mm Ozone resistance **DIN EN ISO 17025** Cracking stage 0

Illustration of the isolation efficiency of a single-degree-of-freedom system (SDOF system) on a rigid base with **REGUPOL vibration 480.** Parameter: power transmission (insertion loss) in dB, isolation factor in %.

1.50

Change of the dynamic stiffness due to changes in amplitudes. Average for 5 Hz, 10 Hz and 40 Hz excitation. Sinusoidal excitation at a constant mean load of 0.10 N/mm², dimensions of the specimens 300 x 300 x 60 mm. Natural frequency of a single-degree-of-freedom system (SDOF system) on a rigid base.

Change of the mechanical loss factor due to changes in amplitudes. Sinusoidal excitation at a constant mean load of 0.10 N/mm^2 , dimensions of the specimens $300 \times 300 \times 60 \text{ mm}$.

Illustration of the dynamic modulus of elasticity for sinusoidal excitation at a constant mean load and an amplitude of \pm 0.25 mm. Dimensions of specimens 300 x 300 x 45 mm; static modulus of elasticity as a result of the tangent modulus of the spring characteristic. Tested in accordance with DIN 53513.

1.50

0.80

0.30

0.15

0.12

0.10

0.05

0.02

0

N/mm²

1000

800

550

450

400

300

Exclusion of Liability

Technical services and offers based on these are subject to our General Terms and Conditions of sale, a copy of which can be found on our website www. berleburger.com. Special attention should be paid to paragraphs 4 and 5. In so far, please be advised as follows:

Our expertise is the development and manufacturing of products. With our recommendation we can only assist you in selecting a product that is suitable for your demand. However, we cannot act as your architect or consulting expert. This would only be possible subject to a separately concluded service contract that we would have to bill you for. Such contracts are not part of our scope of supply and services. Hence, our recommendation does not lay claim for its correctness. Guarantees do only apply to the technical properties of the material supplied.

Comment on tolerances: All technical values correspond to our current state of knowledge and are to be understood as reference values only. These values can be subject to considerable variabilities due to production and/or material reasons as well as due to outside influences (temperature, humidity etc.). Thus special agreements on material parameters might be necessary on a case-by-case basis.

Forms of delivery, ex warehouse

Rolls

Thickness: 15 mm Length: 10,000 mm, special lengths available Width: 1,250 mm

Stripping/Plates On request: Die-cutting, water-jet cutting, self-adhesive versions possible

Technical Details

Maximum static load bearing capacity 0.300 N/mm²

Rare, short term peak loads up to 0.400 N/mm²

N/mm²

Physical property	Norm	Result	Comment
Static modulus of elasticity	Based on EN 826	0.5 - 1.7 N/mm²	Tangential modulus, see figure "Modulus of elasticity"
Dynamic modulus of elasticity	Based on DIN 53513	2.5 - 7.0 N/mm²	Depending on frequency, load and thickness, see figure "dynamic stiffness"
Mechanical loss factor	DIN 53513	0.16	Load-, amplitude- and frequency-dependent
Compression set	Based on DIN EN ISO 1856	3.4 %	Measured 30 minutes after decompression with 50% deformation / 23 °C after 72 hrs
Tensile strength	Based on DIN EN ISO 1798	0.6 N/mm²	
Elongation at break	Based on DIN EN ISO 1798	65 %	
Tear resistance	Based on DIN ISO 34-1	5.0 N/mm	
Fire behaviour	DIN 4102 DIN EN 13501	B2 E	Normal flammability acceptable fire behaviour
Sliding friction	REGUPOL-laboratory REGUPOL-laboratory	0.7 0.8	Steel (dry) Concrete (dry)
Compression hardness	Based on DIN EN ISO 3386-2	415 kPa	Compressive stress at 25 % deformation test specimen h = 60 mm
Rebound elasticity	Based on DIN EN ISO 8307	36 %	dependent on thickness, test specimen h = 60 mm
Force reduction	DIN EN 14904	65 %	dependent on thickness, test specimen h = 60 mm
Ozone resistance	DIN EN ISO 17025	Cracking stage 0	

Ĵ

Illustration of the isolation efficiency of a single-degree-of-freedom system (SDOF system) on a rigid base with **REGUPOL vibration 550**. Parameter: power transmission (insertion loss) in dB, isolation factor in %.

1.50

0.80

0.30

1000

800

550

Change of the mechanical loss factor due to changes in amplitudes. Sinusoidal excitation at a constant mean load of 0.25 N/mm^2 , dimensions of the specimens $300 \times 300 \times 60 \text{ mm}$.

Illustration of the dynamic modulus of elasticity for sinusoidal excitation at a constant mean load and an amplitude of \pm 0.25 mm. Dimensions of specimens 300 x 300 x 45 mm; static modulus of elasticity as a result of the tangent modulus of the spring characteristic. Tested in accordance with DIN 53513.

Illustration of the dynamic stiffness for sinusoidal excitation at a constant mean load and an amplitude of \pm 0.25 mm. Dimensions of specimens 300 x 300 x 45 mm; static stiffness as a result of the tangent modulus of the spring characteristic. Tested in accordance with DIN 53513.

0

0.02

1.50

0.80

0.30

0.15

0.12

0.10

0.05

1000

800

480

450

400

300

200

Exclusion of Liability

Technical services and offers based on these are subject to our General Terms and Conditions of sale, a copy of which can be found on our website www. berleburger.com. Special attention should be paid to paragraphs 4 and 5. In so far, please be advised as follows:

Our expertise is the development and manufacturing of products. With our recommendation we can only assist you in selecting a product that is suitable for your demand. However, we cannot act as your architect or consulting expert. This would only be possible subject to a separately concluded service contract that we would have to bill you for. Such contracts are not part of our scope of supply and services. Hence, our recommendation does not lay claim for its correctness. Guarantees do only apply to the technical properties of the material supplied.

Comment on tolerances: All technical values correspond to our current state of knowledge and are to be understood as reference values only. These values can be subject to considerable variabilities due to production and/or material reasons as well as due to outside influences (temperature, humidity etc.). Thus special agreements on material parameters might be necessary on a case-by-case basis.

Forms of delivery, ex warehouse

Rolls

Thickness: 10 mm Length: 8,000 mm, special lengths available Width: 1,250 mm

Stripping/Plates On request: Die-cutting, water-jet cutting, self-adhesive versions possible

Technical Details

Maximum static load bearing capacity 0.800 N/mm²

Rare, short term peak loads up to 1.000 N/mm²

550 0.15 480 0.12 450 0.10 400 0.05 300 0.02 200 0

N/mm²

1.50

0.80

0.30

1000

300

Physical property	Norm	Result	Comment
Static modulus of elasticity	Based on EN 826	1.2 - 2.9 N/mm²	Tangential modulus, see figure "Modulus of elasticity"
Dynamic modulus of elasticity	Based on DIN 53513	3.6 - 18.2 N/mm²	Depending on frequency, load and thickness, see figure "dynamic stiffness"
Mechanical loss factor	DIN 53513	0.18	Load-, amplitude- and frequency-dependent
Compression set	Based on DIN EN ISO 1856	3.7 %	Measured 30 minutes after decompression with 50% deformation / 23 °C after 72 hrs
Tensile strength	Based on DIN EN ISO 1798	0.9 N/mm²	
Elongation at break	Based on DIN EN ISO 1798	70 %	
Tear resistance	Based on DIN ISO 34-1	8.0 N/mm	
Fire behaviour	DIN 4102 DIN EN 13501	B2 E	Normal flammability acceptable fire behaviour
Sliding friction	REGUPOL-laboratory REGUPOL-laboratory	0.7 0.8	Steel (dry) Concrete (dry)
Compression hardness	Based on DIN EN ISO 3386-2	545 kPa	Compressive stress at 25 % deformation test specimen h = 60 mm
Rebound elasticity	Based on DIN EN ISO 8307	30 %	dependent on thickness, test specimen h = 60 mm
Force reduction	DIN EN 14904	61 %	dependent on thickness, test specimen h = 60 mm
Ozone resistance	DIN EN ISO 17025	Cracking stage 0	

Ĵ

Illustration of the isolation efficiency of a single-degree-of-freedom system (SDOF system) on a rigid base with **REGUPOL vibration 800**. Parameter: power transmission (insertion loss) in dB, isolation factor in %.

Technical Data | REGUPOL vibration 800 | Release 31.03.2021 | www.regupol.com

0.02 -

0

1.50

0.80

0.30

0.15

0.12

0.10

0.05

1000

300

550

480

450

400

300

Change of the dynamic stiffness due to changes in amplitudes. Average for 5 Hz, 10 Hz and 40 Hz excitation. Sinusoidal excitation at a constant mean load of 0.80 N/mm², dimensions of the specimens 250 x 250 x 60 mm. Natural frequency of a single-degree-of-freedom system (SDOF system) on a rigid base.

Change of the mechanical loss factor due to changes in amplitudes. Sinusoidal excitation at a constant mean load of 0.80 N/mm^2 , dimensions of the specimens $250 \times 250 \times 60 \text{ mm}$.

Illustration of the dynamic modulus of elasticity for sinusoidal excitation at a constant mean load and an amplitude of \pm 0.25 mm. Dimensions of specimens 250 x 250 x 40 mm; static modulus of elasticity as a result of the tangent modulus of the spring characteristic. Tested in accordance with DIN 53513.

1.50

0.80

0.30

0.15

0.12

0.10

0.05

0.02

1000

800

550

480

450

400

300

200

Technical Data | **REGUPOL vibration 800** | Release 31.03.2021 | www.regupol.com

Exclusion of Liability

Technical services and offers based on these are subject to our General Terms and Conditions of sale, a copy of which can be found on our website www. berleburger.com. Special attention should be paid to paragraphs 4 and 5. In so far, please be advised as follows:

Our expertise is the development and manufacturing of products. With our recommendation we can only assist you in selecting a product that is suitable for your demand. However, we cannot act as your architect or consulting expert. This would only be possible subject to a separately concluded service contract that we would have to bill you for. Such contracts are not part of our scope of supply and services. Hence, our recommendation does not lay claim for its correctness. Guarantees do only apply to the technical properties of the material supplied.

Comment on tolerances: All technical values correspond to our current state of knowledge and are to be understood as reference values only. These values can be subject to considerable variabilities due to production and/or material reasons as well as due to outside influences (temperature, humidity etc.). Thus special agreements on material parameters might be necessary on a case-by-case basis.

126|136

Forms of delivery, ex warehouse

Rolls

Thickness: 10 mm Length: 8,000 mm, special lengths available Width: 1,250 mm

Stripping/Plates On request: Die-cutting, water-jet cutting, self-adhesive versions possible

Technical Details

Maximum static load bearing capacity 1.500 N/mm²

...

Rare, short term peak loads up to 1.750 N/mm²

.

Ozone resistance

N/mm²

Physical property	Norm	Result	Comment
Static modulus of elasticity	Based on EN 826	4.0 - 11.0 N/mm²	Tangential modulus, see figure "Modulus of elasticity"
Dynamic modulus of elasticity	Based on DIN 53513	15.0 - 45.0 N/mm²	Depending on frequency, load and thickness, see figure "dynamic stiffness"
Mechanical loss factor	DIN 53513	0.16	Load-, amplitude- and frequency-dependent
Compression set	Based on DIN EN ISO 1856	4.9 %	Measured 30 minutes after decompression with 50% deformation / 23 °C after 72 hrs
Tensile strength	Based on DIN EN ISO 1798	2.3 N/mm²	
Elongation at break	Based on DIN EN ISO 1798	110 %	
Tear resistance	Based on DIN ISO 34-1	15.0 N/mm	
Fire behaviour	DIN 4102 DIN EN 13501	B2 E	Normal flammability acceptable fire behaviour
Sliding friction	REGUPOL-laboratory REGUPOL-laboratory	0.6 0.7	Steel (dry) Concrete (dry)
Compression hardness	Based on DIN EN ISO 3386-2	1 650 kPa	Compressive stress at 25 % deformation test specimen h = 60 mm
Rebound elasticity	Based on DIN EN ISO 8307	37 %	dependent on thickness, test specimen h = 60 mm
Force reduction	DIN EN 14904	45 %	dependent on thickness, test specimen h = 60 mm

Cracking stage 0

DIN EN ISO 17025

Ĵ

Illustration of the isolation efficiency of a single-degree-of-freedom system (SDOF system) on a rigid base with **REGUPOL vibration 1000.** Parameter: power transmission (insertion loss) in dB, isolation factor in %.

0

1.50

0.80

0.30

0.15

0.12

0.10

0.05

0.02

1000

800

550

480

450

400

300

Change of the mechanical loss factor due to changes in amplitudes. Sinusoidal excitation at a constant mean load of 1.50 N/mm^2 , dimensions of the specimens $200 \times 200 \times 60 \text{ mm}$.

Illustration of the dynamic modulus of elasticity for sinusoidal excitation at a constant mean load and an amplitude of \pm 0.25 mm. Dimensions of specimens 200 x 200 x 40 mm; static modulus of elasticity as a result of the tangent modulus of the spring characteristic. Tested in accordance with DIN 53513.

1.50

0.80

0.30

0.15

0.12

0.10

0.05

0.02

800

550

480

450

400

300

Exclusion of Liability

Technical services and offers based on these are subject to our General Terms and Conditions of sale, a copy of which can be found on our website www. berleburger.com. Special attention should be paid to paragraphs 4 and 5. In so far, please be advised as follows:

Our expertise is the development and manufacturing of products. With our recommendation we can only assist you in selecting a product that is suitable for your demand. However, we cannot act as your architect or consulting expert. This would only be possible subject to a separately concluded service contract that we would have to bill you for. Such contracts are not part of our scope of supply and services. Hence, our recommendation does not lay claim for its correctness. Guarantees do only apply to the technical properties of the material supplied.

Comment on tolerances: All technical values correspond to our current state of knowledge and are to be understood as reference values only. These values can be subject to considerable variabilities due to production and/or material reasons as well as due to outside influences (temperature, humidity etc.). Thus special agreements on material parameters might be necessary on a case-by-case basis.

REGUPOL BSW GmbH

Am Hilgenacker 24 57319 Bad Berleburg phone +49 2751 803 0 info@regupol.de

REGUPOL America LLC REGUPOL Australia Pty. Ltd. REGUPOL Acoustics Middle East FZE REGUPOL Schweiz AG REGUPOL Zebra Athletics LLC BSW Shanghai CO. LTD.

REG TD AK EN 032021 Online Version March 2021